Spreadsheet Title:	I-Girder Section Analysis, AASHTO LRFD 3rd Ed. (2004), Art. 6.10; ver. 0.122 ((c) DesignSpreadsheets.com 2005-2008)
Last Revision Date:	8/27/2005
	All blue fields with double frames are used for input.
	by DesignSpreadsheets.com
	www.DesignSpreadsheets.com
	email: info@designspreadsheets.com
Project	I-Girder Section Applysis and Design Spreadsheet Demo for DesignSpreadsheets com
Filipect	Website
Job No.	ху
Subject	Spreadsheet Demo
Sheet No.	xy
Made By	admin
Date Made	4/12/2006
Checked By	admin
Date Checked	4/12/2006

Comments

Spreadsheet Instructions

Checks for marking relevant/nonrelevant calculations in the left column:

- 1. Positive / Negative Moment Region
- 2. Composite / Noncomposite Section
- 3. Compact / Noncompact Section (Local)

Note:

Factor 1.5 used for construction loads (Strength IV load combination - high dead load to live load ratio).

Color Coding:

	[LIGHT BROWN shading]	headings
	[CYAN shading]	user's input
	[STRIPED CYAN shading]	user's input that typically depends on other input (typically, these cells do not need to
		be changed)
	[YELLOW shading]	important conclusions, values, etc.
		' ' with green shading in very left column - relevant calculations for current input
х		red 'x' in very left column - nonrelevant calculations for current input
		'.' in very left column - calculations not considered in the current version of the
		spreadsheet but referenced for completeness

Disclaimer

This spreadsheet was tested for reliability and accuracy by DesignSpreadsheets.com. However, it is entirely responsibility of the spreadsheet user to verify the applicability and accuracy of any results obtained from this spreadsheet. DesignSpreadsheets.com is not liable for any damages, direct or indirect, resulting from using this spreadsheet.

Spreadsheet Revision History

4/11/2006 [ver. 0.121]	First BridgeArt.net version.
4/14/2006 [ver. 0.122]	Minor cosmetic revisions.

Registration

Registration Key

Unregistered Demo Version ???

DESIGN SPREADSHEETS.COM

		((c) DesignSpreadsheets.com 2005-200					
Project:	I-Girder Section Analysis and Design Spreadsheet Demo for DesignSpreadsheets.com Website	Made By: Date:	admin 4/12/2006	Job No: xy			
Subject:	Spreadsheet Demo	Checked By: Date:	admin 4/12/2006	Sheet No: <i>xy</i>			

I-Girder Section Analysis, AASHTO LRFD

Girder 4

INPUT

OUTPUT - Sectional Properties (section transformed into steel)

(section transformed into steel)	
0.1	

Girdor				Girder	Composite (2p)	Composite	Composite (robar)
b	10	in	Girder A [in ²]	07.12	(31)	(1)	
D _{bf}	10			97.13	97.15	97.15	97.15
b _{tf}	18	in	Girder y _{cg} [in]	26.742	26.742	26.742	26.742
t _{bf}	1.875	in	Girder I _z [in ⁴]	52389.9	52389.9	52389.9	52389.9
t _{tf}	1.75	in	Haunch A [in ²]	-	0.00	0.00	-
h _w	51	in	Haunch y _{cg} [in]	-	54.625	54.625	-
t _w	0.625	in	Haunch I _z [in ⁴]	-	0.0	0.0	-
			Deck A [in ²]	-	25.47	76.42	-
Deck			Deck y _{cg} [in]	-	58.625	58.625	-
b _d	75.468	in	Deck I _z [in ⁴]	-	135.9	407.6	-
t _d	8	in	Rebar A	-	-	-	3.34
A _{s1}	1.98	in²	Rebar y _{cg}	-	-	-	58.996
A _{s2}	1.36	in²	Rebar Iz	-	-	-	12.9
d ₁	2	in	Total A	97.13	122.60	173.55	100.47
d ₂	2	in	Total y _{cg}	26.742	33.367	40.782	27.815
			Total Iz	52389.9	73040.1	96273.3	55762.0
Hauch			y_topdeck(d) [in]	-	29.258	21.843	-
b _h	0	in	y_topbar(c) [in]	-	27.258	19.843	32.810
t _h	0	in	y_topgrd(b) [in]	27.883	21.258	13.843	26.810
			y_botgrd(a) [in]	26.742	33.367	40.782	27.815
Modular	ratio		S_topdeck(d) [in ³]	-	2496.4	4407.5	-
n	7.9	[-]	S_topbar(c) [in ³]	-	2679.6	4851.8	1699.5
			S_topgrd(b) [in ³]	1878.9	3435.9	6954.7	2079.9
			S_botgrd(a) [in ³]	1959.1	2189.0	2360.7	2004.8

Section Properties about Weak Axis

$I_y =$	1762.8 <i>in</i> ⁴
$S_{y[TOP FLANGE]} =$	195.9 <i>in</i> ³
Sy[BOT FLANGE] =	195.9 <i>in</i> ³

Neutral Axis Check

OK - neutral axis is within girder

Comment

DES	IGN SPREADSHEETS.COM	I-Girder Section Analysis, AASHTO LRFD 3rd Ed. (2004), Art. 6.10; ver. 0.122 ((c) DesignSpreadsheets.com 2005-2008)				
Project:	I-Girder Section Analysis and Design Spreadsheet Demo for DesignSpreadsheets.com Website	Made By: Date:	admin 4/12/2006	Job No: <i>xy</i>		
Subject:	Spreadsheet Demo	Checked By: Date:	admin 4/12/2006	Sheet No: <i>xy</i>		

Note: Stress sign convention for this sheet - compressive stresses are reported as negative, tensile stresses as positive (sign convention for moments - see sketch below).

Girder 4

INPUT - Moments										
DC1	-2388	kip-ft								
DC2	-230	kip-ft								
DW	-308	kip-ft								
LL+I	-1552	kip-ft								
LL+I fat range	-370	kip-ft								
LL+I permit	-1665	kip-ft								
SE	0	kip-ft								

+M () -M () SIGN CONVENTION FOR MOMENTS

OUTPUT - Stresses

Positive Moment Region (stress at the top of deck is reported as stress in concrete: $f_c=f_s/n$ or $f_c=f_s/(3n)$)

х		Load Acting on	Grd Only	Composite (3n)			Composite (n)							
x		Load Type	DC1	DC2	DW	SE	LL+I	LL+I fat	LL+I p	Service II	Strength I	Strength II	Fatigue	Governing
x	S	@ topdeck(d)	0	0.0	0.1	0.0	0.5	0.1	0.6	0.8	1.1	0.9	0.1	0.1
x	i ES	@ topbar(c)	0	1.0	1.4	0.0	3.8	0.9	4.1	7.4	10.1	8.9	0.7	0.7
х	도포	@ topgrd(b)	15.3	0.8	1.1	0.0	2.7	0.6	2.9	20.6	26.4	25.6	0.5	0.5
x	Ś	@ botgrd(a)	-14.6	-1.3	-1.7	0.0	-7.9	-1.9	-8.5	-27.8	-36.2	-33.8	-1.4	-1.4

Negative Moment Region (stress at the to	op of deck is reported as stress in concrete u	sing short-term composite section: $f_c = f_c/n$

	Load Acting on	Grd Only		Composite (rebar)									
	Load Type	DC1	DC2	DW	SE	LL+I	LL+I fat	LL+I p	Service II	Strength I	Strength II	Fatigue	Governing
Ś	@ topdeck(d)	0	0.1	0.1	0.0	0.5	0.1	0.6	0.9	1.2	1.0	0.1	1.2
ES I	@ topbar(c)	0	1.6	2.2	0.0	11.0	2.6	11.8	18.0	24.5	21.2	2.0	24.5
氏沢	@ topgrd(b)	15.3	1.3	1.8	0.0	9.0	2.1	9.6	30.0	39.1	36.4	1.6	39.1
Ω.	@ botgrd(a)	-14.6	-1.4	-1.8	0.0	-9.3	-2.2	-10.0	-29.9	-39.0	-36.2	-1.7	-39.0

Moment [kip-ft] \rightarrow -4943.6

-5982.3 -277.5

-6450.5

	I-Girder 3rd E ((c) Des	Section Analysis, A. d. (2004), Art. 6.10; ignSpreadsheets.co	ASHTO LRFD ; ver. 0.122 om 2005-2008)	Girder 4
roject: I-Girder Section Analysis and Design Spreadsheet Demo for DesignSpreadsheets.com Website	Made By: Date:	admin 4/12/2006	Job No: xy	
ubject: Spreadsheet Demo	Checked By: Date:	admin 4/12/2006	Sheet No: xy	
Note: sign convention for this sheet - all moments and stresses are	entered and re	ported as absolute	e values.	AASHT
/ariable/Formula	Value	Units C	Comment	Page

BASIC INPUTS

Girder 4

 		NEG COMPOSITE	• general positive moment region (POS), negative moment region (NEG) composite section (COMPOSITE), noncomposite section (NONCOMPOSITE)	
 	t _w =	0.625 in	• geometry web thickness	
Ш	b _{fc} =	18.000 <i>in</i>	full width of compression flange	
	t _{fc} =	1.875 in	thickness of compression flange	
	D =	51.000 in	web depth	
	-		material properties	
		29,000 KSI	steel Young's modulus	
		50.0 KSi	specified minimum yield streng of web	
	Fyw =	50.0 KSI	specified minimum yield stress of web	
Ш	Fy,reinf =	60.0 KSI	specified minimum yield strength of remorcement	
II	F _{yc} =	50.0 ksi	specified minimum yield strength of compression flange	
II	F _{yt} =	50.0 <i>ksi</i>	specified minimum yield strength of tension flange	
II	F _{yr} =	35.0 ksi	compression flange stress at the onset of nominal yielding	6-108
Ш	note: $F_{yr} = min (0.7F_{yc}, F_{yw})$, $Fyr \ge 0.5F_{yc}$			
			• effect of applied loads	
			Igod factors [AASHTO 6 5 4 2]	6 27
	$\Phi_{\ell} =$	1 00 [-]	resistance factor for flexure	0-27
ï	$\Phi_{i} =$	1.00 [-]	resistance factor for shear	
ii.	· V			
" "		4 000 / 1	• slenderness ratios for local buckling resistance [AASHTO 6.10.8.2.2]	6-107
1	$\Lambda_{f} = D_{fc} / (2t_{fc}) =$	4.800 [-]	signification for compression flange	
	$\lambda_{\rm pf} = 0.56 \text{sqrt} (\text{E}/\text{F}_{\rm yc}) =$	9.152 [-]	limiting slanderness ratio for a compact liange	
	$\Lambda_{\rm ff} = 0.50$ squ (E/Fyc) =	13.968 [-]	imiting stenderness ratio for a noncompact hange	
ï			 reduction factors 	
II	R _h =	1.000 [-]	 hybrid factor to account for reduced contribution of web to nominal flexural resistance at first yield in flange element; use 1.0 for girders with same steel strength for flange and web 	6-80
:	NOT CONSIDERED: $R_{h} = [12+\beta(3\rho-\rho^{3})] / [12+2\beta] =$			
•	$p = 2\omega_n t_w / A_{tn} = \rho = \min (F_{yw}/f_{n}, 1.0) =$			
	R _b =	1.000 [-]	\circ web load-shedding factor; accounts for increase in	6-81
			compression flange stress due to web local buckling	
	$R_b = 1 - [a_{wc}/(1200+300a_{wc})] [2D_c/t_w - \lambda_{rw}] =$	1.000 [-]		
	$\lambda_{\rm rw} = 5.7 \ {\rm sqrt}({\rm E}/{\rm F}_{\rm yc}) =$	137.3 [-]	limiting slenderness ratio for noncompact web	
	$a_{wc} = 2D_c t_w / b_{fc} t_{fc} =$	0.921 [-]		

D E S I G N S P R E A D S H E E T S . C O M	I-Girder	Section Analysis, AA	SHTO LRFD
	3rd E	d. (2004), Art. 6.10; v	rer. 0.122
	((c) Des	ignSpreadsheets.com	n 2005-2008)
Project: I-Girder Section Analysis and Design Spreadsheet Demo	Made By:	admin	Job No:
for DesignSpreadsheets.com Website	Date:	4/12/2006	<i>xy</i>
Subject: Spreadsheet Demo	Checked By:	admin	Sheet No:
	Date:	4/12/2006	<i>xy</i>

Variable/Formula Value Units

|| indicates that corresponding checks are applicable for section under consideration (based on user's input)

↓	— indicates that corresponding checks are applicable for section is	under consideration (based	on user's input)	
			Nominal Shear Resistance of Unstiffened Webs [AASHTO 6.10.9.2]	6-115
ll	$V_n = V_{cr} = CV_p =$	632 <i>kip</i>	V_n = nominal shear resistance, V_{cr} = shear-buckling resistance	
	$V_p = 0.58F_{yw}Dt_w =$	924 <i>kip</i>	plastic shear force	
ll	C =	0.684 [-]	ratio of the shear buckling resistance to the shear yield strength	
	if $D/t_w \le 1.12$ sqrt (Ek/F _{yw}) then C =	1.000 [-]		
	if 1.12 sqrt (Ek/ F_{yw}) < D/ $t_w \le$ 1.40 sqrt (Ek/ F_{yw}) then C =			
	= 1.12 / (D/t _w) sqrt (Ek/F _{yw}) =	0.739 [-]		
	if $D/t_w > 1.40$ sqrt (Ek/F _{yw}) then C =			
	$= 1.57 / (D/t_w)^2 (Ek/F_{yw}) =$	0.684 [-]		
	note: D/t _w =	81.6 [-]		
	note: 1.12 sqrt (Ek/F _{yw}) =	60.3 [-]		
	note: 1.40 sqrt (Ek/F _{yw}) =	75.4 [-]		
II	k =	5.0 [-]	shear buckling coefficient (k=5 for unstiffened webs)	
			• Nominal Resistance of Stiffened Webs - Interior	6-116
	NOT CONSIDERED		Panels [AASHTO 6.10.9.3.2] not considered, because current version of the spreadsheet handles only unstiffened webs	
·			 Nominal Resistance of Stiffened Webs - End 	6-117

Comment

Panels [AASHTO 6.10.9.3.3]

not considered, because current version of the spreadsheet handles only unstiffened webs

. NOT CONSIDERED

CONSTRUCTIBILITY

	f _{bu[C]} =	21.9	ksi	 Basic Inputs stress in compression flange due to DC1 (no lateral bending), factored by 1.5 (Strength IV load 	
	$f_{bu[T]} =$	22.9	ksi	combination) stress in tension flange due to DC2 (no lateral bending), factored by 1.5 (Strength IV load combination)	
	f _{I(C)} =	10.0	ksi	stress in compression flange due to lateral bending (wind, from exterior girder bracket during construction, etc.)	
	f _{ITTI} =	10.0	ksi	stress in tension flange due to lateral bending	
ll	V _u =	96	kips	factored shear in web, factored by 1.5 (Strength IV load combination)	
ll	D _c =	24.867	in	depth of web in compression in the elastic range	6-69
ll	$r_t = b_{fc} / sqrt\{ 12 [1+(D_c t_w)/(3b_{fc} t_{fc})] \} =$	4.838	in	effective radius of gyration for lateral torsional buckling	6-109
	C _b =	1.000	[-]	moment gradient modifier (conservatively, use $C_{b} = 1.0$)	6-108
Ш					
Ï				 unbraced lengths for lateral torsional buckling resistance [AASHTO 6.10.8.2.3] 	6-108
	L _b =	264.0	in	unbraced length	
	$L_p = 1.0 r_t sqrt(E/F_{yc}) =$	116.5	in	limiting unbraced length 1 (for compact)	
	$L_r = \pi r_t \operatorname{sqrt} (E/F_{vr}) =$	437.5	in	limiting unbraced length 2 (for noncompact)	
				,	
Ï				Compression Flange Flexural Resistance [AASHTO 6.10.8.2]	6-106

6-86

Girder 4

AASHTO

Page

	D E S I G N S P R E A D S H E E T S . (сом	I-Girder S 3rd E ((c) Desi	Section Analysi d. (2004), Art. 6 ignSpreadsheet	s, AASHTO LRFD 5.10; ver. 0.122 s.com 2005-2008)		Girder 4
	Project: I-Girder Section Analysis and Design Spreadsh for DesignSpreadsheets.com Website	neet Demo Ma	ade By: ate:	admin 4/12/2006	Job No: xy		
	Subject: Spreadsheet Demo	C	hecked By: ate:	admin 4/12/2006	Sheet No: xy		
	Note: sign convention for this sheet - all moments and	stresses are ente	ered and re	ported as abso	olute values.		AASHTO
	Variable/Formula	Va	lue	Units	Comment		Page
L	indicates that corresponding checks are applicable	le for section und	ler conside	ration (based	on user's input)		
	F _{nc} = min (F _{nc[1]} , F _{nc[2]}) =			43.1 <i>ksi</i>	 o nominal flexural re smaller local buckling buckling resistance [sistance of flange taken as g resistance and lateral torsional AASHTO 6.10.8.2.1]	
ll	F _{nc[1]} =			50.0 <i>ksi</i>	 local buckling resis flange [AASHTO 6.1 	stance of the compression 0.8.2.2]	
	if $\lambda_f \le \lambda_{pf}$ then $F_{nc[1]} = R_b R_h F_{yc} =$ if $\lambda_f > \lambda_{pf}$ then $F_{nc[1]} =$			50.0 <i>ksi</i>			
	= {1-[1- $F_{yr}/(R_hF_{yc})][(\lambda_f-\lambda_{pf})/(\lambda_{rf}-\lambda_{pf})]$ } $R_bR_hF_{yc}$ =			63.6 <i>ksi</i>			
	$F_{nc[2]} =$			43.1 <i>ksi</i>	 lateral torsional bu compression flange 	ckling resistance of [AASHTO 6.10.8.2.3]	
	if $L_b \le L_p$ then $F_{nc[2]} = R_b R_h F_{yc} =$			50.0 <i>ksi</i>			
- 11	$= C_{\rm b} \{1 - [1 - E_{\rm c}/(R_{\rm b} - E_{\rm c})][(L_{\rm b} - L_{\rm c})/(L_{\rm c} - L_{\rm c})]\} R_{\rm b} R_{\rm b} E_{\rm co} =$			43.1 ksi	note: F≤ R.R.F		
	if $L_b > L_r$ then $F_{ncl21} = F_{cr} =$			96.1 <i>ksi</i>	note: $F_{nc[2]} \le R_b R_h F_{vc}$		
	$F_{cr} = C_b R_b \pi^2 E / (L_b/r_t)^2 =$			96.1 <i>ksi</i>			
	F _{crw} = min (F _{crw[1]} , F _{crw[2]} , F _{crw[3]}) =			50.0 ksi	 nominal bend buck longitudinal stiffeners 	kling resistance for webs without s [AASHTO 6.10.1.9.1]	6-67
	$F_{crw(1)} = 0.9Ek / (D/t_w)^2 =$		1	48.4 <i>ksi</i>			
	$k = 9 / (D_c/D)^2 =$			37.9 [-]	bend buckling coeffic	cient	
	$F_{crw[2]} = R_h F_{yc} =$			50.0 <i>ksi</i>			
	$F_{crw[3]} = F_{yw}/0.7 =$			71.4 <i>ksi</i>			
					• Flexure - Discretel Compression [AASH	y Braced Flanges in ITO 6.10.3.2.1]	6-87
	$f_{bu} + f_{l} \leq \Phi_{f} R_{h} F_{yc}$			0K 31 9 ksi			
	$\Phi_{\rm f} R_{\rm h} F_{\rm vc} =$			50.0 ksi			
	 			OK			
	$f_{bu} + (1/3)f_1 \ge \Psi_f \Gamma_{nc}$ $f_{bu} + (1/3)f_1 =$			25.3 ksi			
- 11	$\Phi_{\rm f} F_{\rm nc} =$			43.1 <i>ksi</i>			
	$f_{bu} \leq \Phi_f F_{crw}$			ок			
	f _{bu} =			21.9 <i>ksi</i>			
	$\Phi_{\rm f} F_{\rm crw} =$			50.0 ksi			
					• Flexure - Discretel	y Braced Flanges in Tension	6-89
Ш	f. ⊥f.≤ 0.R.F.			OK	[AASHTO 6.10.3.2.2]	
ü	$f_{bu} + f_l =$			32.9 ksi			
	$\Phi_f R_h F_{yt} =$			50.0 <i>ksi</i>			
					 Flexure - Continou assumption that cont subject to local or lat 	sly Braced Flanges in C or T; tinously braced flange is not teral torsional buckling	
•	$f_{bu} \leq \Phi_f R_h F_{yf}$ NOT CONSIDERED				not considered, beca braced during constr	ause no flanges are continously ructruction	
					Shear		6-90
II	$V_u \leq \Phi_v V_{cr}$			ОК	, , , , , ,		
	$V_{u} =$			96 kips	factored shear in the	web	
	v _{cr} =			632 KIPS	snear buckling resist	ance	
					Stress in Concrete	Deck [AASHTO 6.10.3.2.4]	6-89

	DESIGN SPREADSHEETS.COM	I-Girder 3rd E ((c) Des	Sectio d. (20	on Analys 004), Art. 9readshee	is, AASHTO LRFD 6.10; ver. 0.122 ets.com 2005-2008)		Girder 4
	Project: I-Girder Section Analysis and Design Spreadsheet Demo for DesignSpreadsheets com Website	Made By: Date:	adm 4/12	nin 1/2006	Job No:		
	Subject: Spreadsheet Demo	Checked By:	adm	nin	Sheet No:		
	Note: sign convention for this sheet - all moments and stresses are e	entered and re	porte	d as abs	solute values.]	
	Variable/Formula	Value		Units	Comment		AASHTO Page
Г	— indicates that corresponding checks are applicable for section	under conside	eration	n (based	on user's input)		
▼	Shall 1% longitudinal reinforcement be provided?		YES		If the actual tensile s Φf _r , to control cracki reinforcement shall I deck area. [AASHTC	stress in concrete deck exceeds ng, the area of longitudinal be at least 1% of the concrete 0 6.10.1.7]	6-75
	$\sigma_c = (1/n) (M/S) =$	A*	1.2	ksi kin in	actual tensile stress	in concrete deck	6 75
=	note: M = S =	42	3,582 407.5	kip-ft in ³	1.5 (Strength IV load ratio) [imported from [AASHTO 6.10.1.7] section modulus for transformed in steel	top of deck using n = 1 (section l imported from Stresses tab]	0-73
	of -		0.0	ksi	factored concrete to		
1	$\Phi_{\rm r} = \Phi_{\rm r}$		0.0	[-]	resistance factor for	concrete in tension	5-53
II	$f_r = 0.24 \text{ sqrt} (f_c') =$		0.00	ksi	modulus of rupture f [AASHTO 5.4.2.6]	or concrete deck	5-16
	f _c ' =			ksi	specified compressiv	ve strength of concrete	
	F						1
	SERVICE LIMIT STATE					[AASHTO 6.10.4]	6-93
 	f _{f[TOP]} =		30.0	ksi	 Basic Inputs stress in top flange f 	or Service II load combination	
II	f _{r[BOT]} =		29.9	ksi	stress in bottom flan	ge for Service II load	
Ш	f, =		10.0	ksi	combination		
	$\begin{aligned} \mathbf{f_f} &\leq \mathbf{0.95R_hF_{yf}} \\ \mathbf{f_f} &= \\ \mathbf{0.95R_hF_{yf}} &= \end{aligned}$		OK 30.0 47.5	ksi ksi	 Flexural Checks top steel flange of 	composite sections	6-93
			OK 34.9 47.5	ksi ksi	 bottom steel flange 	e of composite sections	
•	$f_f + f_f/2 \le 0.80 R_h F_{yf}$ NOT CONSIDERED				 both steel flanges noncomposite section version of the spread 	of noncomposite sections ons are not considered in this dsheet	
	f _c ≤ F _{crw}		ок		 this check applies composite sections proportions such that IAASHTO Eq. 6.104 	to all sections except for in positive flexure with web it $D/t_w \le 150$ 4.2.2-41	6-94
II	$f_c = f_{I[TOP]} =$		30.0	ksi	compression flange	stress due to Service II loads	
ll	F _{crw} =		50.0	ksi	nominal bend buckli "Strength Limit State calculation of F _{crw}] [/	ng resistance for webs [see s" section below for the AASHTO 6.10.1.9.1]	6-77
	Shall 1% longitudinal reinforcement be provided?		YES		 Stress in Concrete If the actual tensile s Φf_r, to control cracki 	e Deck [AASHTO 6.10.3.2.4] stress in concrete deck exceeds ng, the area of longitudinal	6-89 6-75
					reinforcement shall deck area. [AASHT0	be at least 1% of the concrete 0 6.10.1.7]	
	$\sigma_c = (1/n) (M/S) =$		1.70	ksi	actual tensile stress	in concrete deck	_
	M =	59	9,323	kip-in	moment due to Serv [imported from Stres	uce II load combination ses tab] [AASHTO 6.10.1.7]	6-75

	D E S I G N S P R E A D S H E E T S . C O M	I-Girder 3rd E ((c) Des	Section Analysis d. (2004), Art. 6. ignSpreadsheets	, AASHTO LRFD 10; ver. 0.122 .com 2005-2008)]	Girder 4
	Project: I-Girder Section Analysis and Design Spreadsheet Demo for DesignSpreadsheets.com Website	Made By: Date:	admin 4/12/2006	Job No: xy		
	Subject: Spreadsheet Demo	Checked By: Date:	admin 4/12/2006	Sheet No: xy		
	Note: sign convention for this sheet - all moments and stresses are en	ntered and re	ported as absol	ute values.	-	
	Variable/Formula	Value	Units	Comment		AASHTO Page
Г		ınder conside	eration (based o	n user's input)		
▼ 	S =	44	407.5 in ³	section modulus for transformed in steel check above)	top of deck using n = 1; section (same as for constructibility	
II	$\Phi f_r =$		0.0 <i>ksi</i>	factored concrete te constructibility check	nsile resistance (same as for k above)	
	FATIGUE AND FRACTURE LIMIT STATES				[AASHTO 6.10.5]	6-95
	fatigue detail description =	tension fl	lange			
- II	$v(\Delta f) \le (\Delta F)_n$		ок			6-29
- II	$\gamma(\Delta f) =$		1.6 ksi	live load stress rang	e due to passage of fatigue load	
п	$(\Delta E) = (\Delta / N) \Delta (1/3) -$		5 0 ksi	multiplied by load fa	ctor $\gamma = 0.75$	6-40
	A = A = A = A = A = A = A = A = A = A =	4	$44.00 \ 10^8 \ ksi^3$	constant from [AAS]	HTO Tab. 6.6.1.2.5-11	6-42
ii	$N = (365)(75)n(ADTT)_{SL} =$	232,687	7,500			
Ш	n =		1	number of stress rar	nge cycles per truck passage	
II	$(ADTT)_{SL} = (p)(ADTT) =$	٤	8,500	taken from [AASH10 single lane ADTT (n direction averaged of [AASHTO 3.6.1.4]	D Tab. 6.6.1.2.5-2] umber of trucks per day in one over the design life)	3-24
	p =		0.85	reduction factor for r	number of trucks for multiple	
II	ADTT = (ftt) (ADT) =	10	0,000	lanes taken from [A/ number of trucks pe	ASHTO Tab. 3.6.1.4.2-1] r day in one direction averaged	
Ш	ftt =		0.25	fraction of trucks in t	traffic	
- ÎÎ	ADT = (nl) (ADT) _{SL} =	4(0,000	average daily traffic	per whole bridge	
II	(ADT) _{SL} =	20	0,000	average daily traffic	per single lane (20,000 is	
Ш	ni =		2	number of lanes	···· <i>)</i>	
	note: $(\Delta F)n \ge (1/2)(\Delta F)_{TH} =$		5.0 ksi			
II	(ΔF) _{TH} =		10.00 10 ⁸ ksi ³	constant amplitude f [AASHTO Tab. 6.6.7	atigue threshold taken from 1.2.5-3]	
•				 special requirement 	nts for webs [AASHTO 6.10.5.3]	6-95
•	V _u ≤ V _{or} NOT CONDERED			not considered, beca need to be checked	ause this requirement does not for unstiffened webs	
	STRENGTH LIMIT STATE					6-96
				 Basic Inputs 		
	f _{bu[C]} =		39.0 ksi	stress in compression	on flange (no lateral bending)	
 	$r_{bu[T]} = f_{I[C]} =$		39.1 ksi 10.0 ksi	stress in tension flar stress in compression	nge (no lateral bending) on flange due to lateral bending	
	f _{I(T)} =		10.0 ksi	stress in tension flar	nge due to lateral bending	
	M _u =	(6 <mark>,451</mark> kip-ft	bending moment ab	out major axis	
	note: M _u =	77	7,406 kip-in			
	v _u =		389 kips	ractored shear in we	2D	
	D _c =	25	5.427 in	depth of web in com	pression in the elastic range	6-69
	D _{cp} =	26	6.906 <i>in</i>	depth of web in com	pression at the plastic moment	6-68

	D E S I G N S P R E A D S H E E T S . C O M	I-Girder 3rd E ((c) Des	Section Analys Ed. (2004), Art. signSpreadshee	sis, AASHTO LRFD 6.10; ver. 0.122 ets.com 2005-2008)		Girder 4
	Project: I-Girder Section Analysis and Design Spreadsheet Demo for DesignSpreadsheets.com Website	Made By: Date:	admin 4/12/2006	Job No:		
	Subject: Spreadsheet Demo	Checked By: Date:	admin 4/12/2006	Sheet No:		
	Note: sign convention for this sheet - all moments and stresses are e	entered and re	ported as abs	solute values.		
	Variable/Formula	Value	Units	Comment		AASHTO Page
Г	—— indicates that corresponding checks are applicable for section	under conside	eration (based	on user's input)		
▼ 	$r_t = b_{f_C} / \ sqrt\{ \ 12 \ [1+(D_c t_w)/(3b_{f_C} t_{f_C})] \ \} =$		4.831 <i>in</i>	effective radius of gy	ration for lateral torsional	6-109
II	C _b =		1.000 [-]	moment gradient mo 1.0)	difier (conservatively, use C_{D} =	6-108
				 unbraced lengths f 	or lateral torsional buckling	6-108
			0010 in	resistance [AASHTC	6.10.8.2.3]	
	$L_b = 1.0 \text{ r sort} (E/E_b) = 0.000 \text{ sort} (E/E_b) = 0.0000 \text{ sort} (E/E_b) = 0.0000000000000000000000000000000000$		204.0 III 116.3 in	limiting unbraced len	ath 1 (for compact)	
	$L_{p} = \pi r_{s} \operatorname{sart} (E/F_{rr}) =$	4	436.9 <i>in</i>	limiting unbraced len	ath 2 (for noncompact)	
ii.					gin 2 (ioi noncompact)	
ij				 Compression Flan 	ge Flexural Resistance	6-106
			40 4 km	[AASHTO 6.10.8.2]	-i-t	
	$F_{nc} = \min(F_{nc[1]}, F_{nc[2]}) =$		43.1 KSI	 nominal flexural re smaller local buckling 	sistance of flange taken as g resistance and lateral torsiona	I
				buckling resistance [AASHTO 6.10.8.2.1]	
	F -		50 0 kai	a loool buckling roois	tance of the compression	
Ш	$\Gamma_{nc[1]} =$		50.0 KSI	flange [AASHTO 6.1	0.8.2.2], same as for	
				constructibility - see	calculations above	
- 11	$F_{nc[2]} =$		43.1 <i>ksi</i>	 lateral torsional bu 	ckling resistance of	
Ш	if $L_{\rm b} \leq L_{\rm p}$ then $F_{\rm pc/21} = R_{\rm b}R_{\rm b}F_{\rm vc} =$		50.0 ksi	compression hange	AASHTO 0.10.0.2.3]	
- II	if $L_p < L_b \le L_r$ then $F_{ncl2l} =$					
- II	= $C_b \{1-[1-F_{yr}/(R_hF_{yc})] [(L_b-L_p)/(L_r-L_p)]\} R_bR_hF_{yc} =$		43.1 ksi			
Ш	if $L_b > L_r$ then $F_{ncl2l} = F_{cr} = C_b R_b \pi^2 E / (L_b / r_t)^2 =$		95.8 ksi			
- 11	note: $F_{nc[2]} \le R_b R_h F_{yc}$					
- II	/ `					
11	$F_{crw} = \min \left(F_{crw[1]}, F_{crw[2]}, F_{crw[3]}\right) =$		50.0 KSI	 nominal bend buck longitudinal stiffeners 	Ing resistance for webs without	6-67
				longitudinal etimenet		
II	$F_{crw[1]} = 0.9Ek / (D/t_w)^2 =$		141.9 <i>ksi</i>			
	$k = 9 / (D_c/D)^2 =$		36.2 [-]	bend buckling coeffic	cient	
11	$F_{crw[2]} = R_h F_{yc} =$		50.0 ksi			
- 11	$F_{crw[3]} = F_{yw}/0.7 =$		71.4 KSI			
x	Composite Section in Positive Flexure					
x				 Compact Section (Criteria	6-98
x		COMF	PACT	Compact/Noncompa	ct (To qualify as compact,	
v	Is F < 70ksi satisfied?		YES	section must meet a	I the criteria listed below).	
Ŷ	Is $D/t \le 150$ satisfied?		YES			
x	$D/t_{w} =$		81.6 [-]			
x	Is $2D_{co}/t_w \le 3.76$ sqrt(E/F _{vc}) satisfied?		YES			
x	$2D_{cp}/t_w =$		0.0 [-]			
x	3.76 sqrt(E/F _{yc}) =		90.6 [-]			
x				 Flexural Resistance 	e for Compact Section	6-101
	M 1/2FS < A M		OK	[AASHTO 6.10.7.1]		
X X	$\mathbf{W}_{u} + 1/3\mathbf{I}_{0}\mathbf{S}_{x} \ge \Psi_{f}\mathbf{W}_{n}$ $\mathbf{M}_{u} + 1/3\mathbf{I}_{0}\mathbf{S}_{u} =$	۶.	UN 4 738 kin-in			
x	$\Phi_{t}M_{p} =$	136	6.224 kip-in			
x	note: M _n =		1,352 kip-ft			
x						
x	$S_{xt} = M_{yt}/F_{yt} =$	21	199.7 <i>in</i> ³	elastic section modu section to the tension	lus about the major axis of the n flange	

 $M_{yt} =$

 $M_n =$

х

х

109,985 *kip-in*

136,224 kip-in

yield moment with respect to tension flange

nominal flexural resistance of the section

6-252

D E S I G N S P R E A D S H E E T S . C O M	I-Girder Section Analysis, A 3rd Ed. (2004), Art. 6.10 ((c) DesignSpreadsheets.c	AASHTO LRFD); ver. 0.122 com 2005-2008)
Project: I-Girder Section Analysis and Design Spreadsheet Demo for DesignSpreadsheets.com Website	Made By: admin Date: 4/12/2006	Job No: xy
Subject: Spreadsheet Demo	Checked By: admin Date: 4/12/2006	Sheet No: xy
Note: sign convention for this sheet - all moments and stresses are	entered and reported as absolut	te values.

Girder 4

Variable/Formula Units Comment

AASHTO Page

|| indicates that corresponding checks are applicable for section under consideration (based on user's input)

w.				
x	note: M _n =	11,352 kip-ft		
x	if $D_p \le 0.1 D_t$ then $M_n = M_p =$	141,433 kip-in		
x	if $D_p > 0.1 D_t$ then $M_n = M_p (1.07-0.7D_p/D_t) =$	136,224 kip-in		
x	D _t =	62.625 in	total depth of composite section [imported from Mp tab]	
x	D _p =	9.558 in	distance from top of concrete deck to the neutral axis of composite section at plastic moment [imported from Mp tab]	
x	M _p =	141,433 kip-in	plastic moment of composite section [imported from Mp tab]	
x	note: M _p =	11,786 kip-ft		
x	note: $M_n \le 1.3R_hM_y =$	142,981 <i>kip-in</i>		
x	M _y =	109,985 <i>kip-in</i>	yield moment [import from My tab]	6-102
	note: M _y =	9,165 <i>kip-ft</i>		
x x			 Flexural Resistance for Noncompact Section [AASHTO 6.10.7.2] Compression Flance Check 	
x	$f_{bu} \leq \Phi_f F_{nc}$	ок		
x	f _{bu} =	39.0 <i>ksi</i>		
x	$\Phi_{\rm f} F_{\rm nc} =$	50.0 <i>ksi</i>		
x	$F_{nc} = R_b R_h F_{yc} =$	50.0 <i>ksi</i>	nominal flexural resistance of compression flange	
x			- Tension Flange Check	
x	$f_{hu} + 1/3f_l \leq \Phi_f F_{nt}$	ОК	- Tension Hange Check	
x	$f_{bu} + 1/3f_l =$	42.4 ksi		
x	$\Phi_{\rm f} F_{\rm nt} =$	50.0 <i>ksi</i>		
x	$F_{nt} = R_h F_{yt} =$	50.0 ksi	nominal flexural resistance of tension flange	
x				
x			 Ductility Requirement (For Both Compact and Noncompact Sections) 	6-105
x	$D_p \leq 0.42 D_t$	ок		
х	D _p =	9.558 in		
x	0.42 D _t =	26.303 in		
	Composite Sections in Negative Flexure and Noncomposite Sections			
Ш				
		COMPACT	 Compact Section Criteria Compact/Noncompact (To qualify as compact, section must meet all the criteria listed below) 	
	Is F _{yf} ≤ 70ksi satisfied?	YES		
	Is $2D_c/t_w \le 5.7$ sqrt(E/F _{yc}) satisfied?	YES		
	$2D_c/t_w =$	81.4 [-]		
	5.7 sqrt(E/F _{yc}) =	137.3 [-]		
 			 Flexural Resistance - Discretely Braced Flanges in Compression [AASHTO 6.10.8.1.1] 	
	$f_{bu} + (1/3)f_1 \le \Phi_f F_{nc}$	ОК		
Ш	$f_{bu} + (1/3)f_{I} =$	42.4 ksi		
	$\Phi_{\rm f} F_{\rm nc} =$	43.1 <i>ksi</i>		
			 Flexural Resistance - Discretely Braced Flanges in Tension 	
	$f_{bu} + (1/3)f_l \le \Phi_f F_{nt}$			
•	NOT CONSIDERED		not considered, because the flanges in tension are continously braced by deck in the negative moment region for strength check	

DES	IGN SPREADSHEETS.COM	I-Girder 3rd E ((c) Des	Section Analys d. (2004), Art. ignSpreadshee	is, AASHTO LRFD 6.10; ver. 0.122 ts.com 2005-2008)	G	Girder 4
Project:	l-Girder Section Analysis and Design Spreadsheet Demo for DesignSpreadsheets.com Website	Made By: Date:	admin 4/12/2006	Job No: xy		
Subject:	Spreadsheet Demo	Checked By: Date:	admin 4/12/2006	Sheet No: xy		
Note: sig	gn convention for this sheet - all moments and stresses are	entered and re	ported as abs	olute values.		AASHTO
Variable/E	Formula	Value	Units	Comment		Page
inc	dicates that corresponding checks are applicable for section	n under conside	eration (based	on user's input)		
, inc	dicates that corresponding checks are applicable for section	n under conside	eration (based	on user's input) • Flexural Resistant in T or C	ce - Continously Braced Flanges	
	dicates that corresponding checks are applicable for section $R_h E_{vf}$	n under conside	oration (based	on user's input) · Flexural Resistant in T or C	ce - Continously Braced Flanges	
$f_{bu} \le \Phi_{f}$	dicates that corresponding checks are applicable for section ${\sf R}_{\sf h}{\sf F}_{\sf yf}$	n under conside	eration (based OK 39.0 ksi	on user's input) o Flexural Resistant in T or C	ce - Continously Braced Flanges	
$f_{bu} \leq \Phi_{f} I$ $f_{bu} = \Phi_{f} R_{h}$	dicates that corresponding checks are applicable for section $R_h F_{yf}$	n under conside	oration (based OK 39.0 ksi 50.0 ksi	on user's input) Flexural Resistant in T or C 	ce - Continously Braced Flanges	
$f_{bu} \le \Phi_{fl}$ $f_{bu} = \Phi_{f}R_{hl}$	dicates that corresponding checks are applicable for section $R_h F_{yf}$ $F_{y1} =$ Resistance [AASHTO 6.10.9]	n under conside	oration (based OK 39.0 ksi 50.0 ksi	on user's input) Flexural Resistant in T or C 	e - Continously Braced Flanges	6-114
$f_{bu} \le \Phi_{f}$ $f_{bu} \le \Phi_{f}$ $f_{bu} = \Phi_{f} R_{h}$ Shear R $V_{u} \le \Phi_{v}$	dicates that corresponding checks are applicable for section $R_h F_{yf}$ $F_{yf} =$ Resistance [AASHTO 6.10.9] V_n	n under conside	OK 39.0 ksi 50.0 ksi OK	on user's input) ○ Flexural Resistand in T or C	ce - Continously Braced Flanges	6-114
$f_{bu} \leq \Phi_{f} l$ $f_{bu} = \Phi_{f} R_{h}$ $f_{bu} = \Phi_{f} R_{h}$ $f_{bu} = \Phi_{f} R_{h}$	dicates that corresponding checks are applicable for section $R_h F_{yf}$ $F_{yf} =$ Resistance [AASHTO 6.10.9] V_n	n under conside	OK 39.0 ksi 50.0 ksi OK 389 <i>kip</i>	on user's input) ○ Flexural Resistand in T or C	ce - Continously Braced Flanges	6-114

DES	I G N S P R E A D S H E E T S . C O M	I-Girder Section Analysis, AASHTO LRFD 3rd Ed. (2004), Art. 6.10; ver. 0.122 ((c) DesignSpreadsheets.com 2005-2008)			
Project:	l-Girder Section Analysis and Design Spreadsheet Demo for DesignSpreadsheets.com Website	Made By: Date:	admin 4/12/2006	Job No: xy	
Subject:	Spreadsheet Demo	Checked By: Date:	admin 4/12/2006	Sheet No: xy	

Note: sign convention for this sheet - all moments are reported as absolute values; negative "P" forces are compressive, positive "P" forces are tensile.

- || indicates that corresponding checks are applicable for section under consideration (based on user's input)

[AASHTO D6.1, p. 6-250]

Girder 4

	Input Taken from Othe	r Tabs	
	b _{bf} =	18 <i>in</i>	 girder dimensions
	b _{tf} =	18 <i>in</i>	
	t _{bf} =	1.875 <i>in</i>	
	t _{tf} =	1.75 <i>in</i>	
	h _w =	51 <i>in</i>	
	t _w =	0.625 <i>in</i>	
	b _d =	75.468 in	 deck dimensions
	t _d =	8 in	
	t _h =	0 <i>in</i>	○ haunch dimensions
	Additional Input		
	-	50 0 losi	
	r _{yf} =	50.0 KSI	specified minimum yield stress of flange
	F _{yw} =	50.0 <i>ksi</i>	specified minimum yield stress of web
	F _{y,reinf} =	60.0 <i>ksi</i>	specified minimum yield stress of reinforcement
	f _c ' =	4.0 ksi	minimum specified 28-day compressive strength of concrete
	β ₁ =	1.000 [-]	use $\beta_1 = 1$ to consider whole concrete block in compression

x	Outputs - Positive Mo	ment Regio	n					
X X X		top coord	bot coord	Height	Force	Arm to PNA	Moment @ PNA	
х		[in]	[in]	[in]	[kips]	[in]	[kip-in]	
х	Ps compression	0.000	8.000	8.000	-2052.7	-5.558	11408.1	concrete
х	Pc compression	8.000	9.558	1.558	-1401.8	-0.779	1091.6	top flange
х	Pc tension	9.558	9.750	0.192	173.2	0.096	16.7	
х	Pw compression	9.750	9.750	0.000	0.0	0.192	0.0	web
х	Pw tension	9.750	60.750	51.000	1593.8	25.692	40947.4	
х	Pt tension	60.750	62.625	1.875	1687.5	52.130	87969.4	bottom flange
х	Total				0.0		141433.1	
х								
Х	$y = D_p =$	9.558	in	distance of	PNA from t	he top of se	ection	
х	M _p =	141,433	kip-in	plastic mom	ent			
x	note: M _p =	11,786	kip-ft	plastic mom	ent			
х	D _{cp} =	0.000	in	depth of web in compression at plastic moment			t	

62.625 *in* total depth of composite section

Outputs - Negative Moment Region

		bot coord	top coord	Height	Force	Arm to PNA	Moment @ PNA	
Ï.		[in]	[in]	[in]	[kips]	[in]	[kip-in]	
	Pr	56.625	56.625	-	200.4	27.844	5579.9	reinforcement
	Pt tension	52.875	54.625	1.750	1575.0	24.969	39325.5	top flange
	Pt compression	52.875	52.875	0.000	0.0	24.094	0.0	
	Pw tension	28.781	52.875	24.094	752.9	12.047	9070.3	web
	Pw compression	1.875	28.781	26.906	-840.8	-13.453	11311.8	
	Pc compression	0.000	1.875	1.875	-1687.5	-27.844	46986.6	bottom flange

 \mathbf{X} $\mathbf{D}_{t} =$

DES	IGN SPREADSHEETS.COM	I-Girder 3rd E ((c) Des	Section Analysis, AA d. (2004), Art. 6.10; v ignSpreadsheets.com	SHTO LRFD rer. 0.122 n 2005-2008)
Project:	l-Girder Section Analysis and Design Spreadsheet Demo for DesignSpreadsheets.com Website	Made By: Date:	admin 4/12/2006	Job No: xy
Subject:	Spreadsheet Demo	Checked By: Date:	admin 4/12/2006	Sheet No: xy

Note: sign convention for this sheet - all moments are reported as absolute values; negative "P" forces are compressive, positive "P" forces are tensile.

|| indicates that corresponding checks are applicable for section under consideration (based on user's input)

▼	Total			0.0	112274.1
"	$y = D_p =$	28.781 in	distance of PNA f	rom the bottom o	f section
	M _p =	112,274 kip-in	plastic moment		
	note: M _p =	9,356 kip-ft	plastic moment		
	D _{cp} =	26.906 in	depth of web in co	ompression at pla	astic moment
	D _t =	56.625 in	total depth of corr	posite section	

DES	I G N S P R E A D S H E E T S . C O M	I-Girder Section Analysis, AASHTO LRFD 3rd Ed. (2004), Art. 6.10; ver. 0.122 ((c) DesignSpreadsheets.com 2005-2008)		
Project:	l-Girder Section Analysis and Design Spreadsheet Demo for DesignSpreadsheets.com Website	Made By: Date:	admin 4/12/2006	Job No: <i>xy</i>
Subject:	Spreadsheet Demo	Checked By: Date:	admin 4/12/2006	Sheet No: <i>xy</i>

DETERMINATION OF YIELD MOMENT My (for strength check)

[AASHTO D6.2, p. 6-252]

Girder 4

	Input		
			• general
Ш	M _{D1} =	35,820 kip-in	factored moment applied to noncomposite
ш	М. –	8 004 kin in	section (1.25 DC1)
Ш		0,994 Kip-iii	section (1.25 DC2 + 1.5 DW)
Ш	note: Mp1 =	2985.0 kip-ft	
ï	note: Mpg =	749 5 kin-ft	
	f -	39.0 ksi	sum of compression flance stresses limport
	·c -	00.0 10	from Stresses tab. for Service II load group]
Ш	f _t =	39.1 ksi	sum of tension flange stresses [import from
			Stresses tab, for Service I load group]
	F _{yf} =	50.0 ksi	specified minimum yield strength of flange
	F _{y,reinf} =	60.0 <i>ksi</i>	specified minimum yield strength of
			reinforcement
	Composite Section in Positive Florure		
x	Composite Section in Positive Flexure		
x	$M_{\rm v} = \min \left(M_{\rm vrrt}, M_{\rm vrc} \right) =$	109,985 kip-in	
x	note: $M_{y} =$	9,165 kip-ft	
х		· •	
х			 determine moment to cause yielding in
			tension (bottom) flange
х	$M_{Y[T]} = M_{D1} + M_{D2} + M_{AD[T]} =$	109,985 kip-in	
х	$M_{AD[T]} = (F_{yf} - M_{D1}/S_{NC[T]} - M_{D2}/S_{LT[T]}) S_{ST[T]} =$	65,171 kip-in	additional moment applied to short term
			composite section to cause nominal yielding in
v	S _	1 050 1 + 3	tension flange
<u>.</u>	S _{NC[T]} =	1,909.1 M ²	short term composite section modulus
X	S _{LT[T]} =	2,189.0 in [°]	short-term composite section modulus
х	S _{ST[T]} =	2,360.7 in ³	long-term composite section modulus
X			- determine memoritie equae violding in
X			determine moment to cause yielding in compression (top) flange
x	$M_{VIC1} = M_{D1} + M_{D2} + M_{ADIC1} =$	241.760 kip-in	compression (top) hange
x	$M_{AD(C)} = (F_{ve} - M_{De}/S_{AD(C)} - M_{De}/S_{AD(C)}) Setter =$	196.946 kip-in	
x		1 878 9 <i>in</i> ³	
Ŷ	S	3 /35 9 : 3	
Ŷ	S	6,450.5 m	
×	S _{ST[C]} =	0,954.7 m°	
x	$D = f / (f + f_{1}) d_{-} t_{1} =$	25 552 in	depth of web in compression in the elastic range
^	$\mathcal{D}_{c} = [\mathbf{r}_{c}] / (\mathbf{r}_{c} ^{-1}\mathbf{t}) / ($	20.002 ///	deput of web in compression in the classic range
x	d =	54.625 in	depth of steel section
х	t _{fc} =	1.750 <i>in</i>	thickness of top flange
	Composite Section in Negative Flexure		
	$M = \min(M - M - M) =$	TE AAE kin in	
	$M_Y = 11111 (M_{Y[T1]}, M_{Y[T2]}, M_{Y[C]}) =$	75,145 kip-iii	
11	1010. my –	6,262 MP-11	
			 determine moment to cause vielding in
П			tension (top) flange
	$M_{Y[T1]} = M_{D1} + M_{D2} + M_{AD[T1]} =$	100,163 <i>kip-in</i>	
		,	

DES	IGN SPREADSHEETS.COM	I-Girder Section Analysis, AASHTO LRFf 3rd Ed. (2004), Art. 6.10; ver. 0.122 ((c) DesignSpreadsheets.com 2005-2008		
Project:	l-Girder Section Analysis and Design Spreadsheet Demo for DesignSpreadsheets.com Website	Made By: Date:	admin 4/12/2006	Job No: <i>xy</i>
Subject:	Spreadsheet Demo	Checked By: Date:	admin 4/12/2006	Sheet No: <i>xy</i>

- || indicates that corresponding checks are applicable for section under consideration (based on user's input)

•			
II	$M_{AD[T1]} = (F_{yf} - M_{D1}/S_{NC[T1]} - M_{D2}/_{COMP[T1]}) S_{COMP[T1]} =$	55,349 kip-in	additional moment applied to short term composite section to cause nominal yielding in tension flange
	S _{NC[T1]} =	1.878.9 in ³	noncomposite section modulus
	$S_{COMP[T1]} = S_{LT[T1]} = S_{ST[T1]} =$	2,079.9 <i>in</i> ³	composite section modulus (concrete deck not effective)
			determine moment to cause yielding in reinforcement
	$M_{Y[T2]} = M_{D2} + M_{AD[T2]} =$	75,145 kip-in	
	$M_{AD[T2]} = (F_{y,reinf} - M_{D1}/S_{NC[T2]}) S_{COMP[T2]} =$	66,151 <i>kip-in</i>	
II	$S_{\text{COMP}[T2]} = S_{\text{LT}[T2]} = S_{\text{ST}[T2]} =$	1,699.5 <i>in</i> ³	
 			 determine moment to cause yielding in compression (bottom) flange
	$M_{Y[C]} = M_{D1} + M_{D2} + M_{AD[C]} =$	99.403 kip-in	
II	$M_{AD[C]} = (F_{yf} - M_{D1}/S_{NC[C]} - M_{D2}/S_{COMP[C]}) S_{COM[C]} =$	54.589 kip-in	
	S _{NC[C]} =	1,959.1 in ³	
II	$S_{COMP[C]} = S_{LT[C]} = S_{ST[C]} =$	2,004.8 in ³	
 	$D_{c} = f_{c} / (f_{c} +f_{t}) d - t_{fc} =$	25.427 in	depth of web in compression in the elastic range
	d =	54.625 in	depth of steel section
İİ	t _{bc} =	1.875 ⁱⁿ	thickness of bottom flange

DETERMINATION OF YIELD MOMENT My (for constructibility check)

[AASHTO D6.2, p. 6-252]

	Input		
ll	f _c =	14.6 ksi	sum of compression flange stresses [import from Stresses tab. for DC1]
Ш	f ₁ =	15.3 ksi	sum of tension flange stresses [import from Stresses tab. for DC1]
	F _{yf} =	50.0 ksi	specified minimum yield strength of flange
x	Noncomposite Section in Positive Flexure		
х			
х	$M_{Y} = \min(S_{NC[T]}F_{yf}, S_{NC[C]}F_{yf}) =$	93,947 kip-in	
х	note: M _Y =	7,829 kip-ft	
x	S _{NCITI} =	1 959 1 <i>in</i> ³	section modulus for tension flange
x	Shore =	1,000.1 in ³	section modulus for compression flange
Ŷ		1,878.9 11	
Ŷ			
x	$D_{c} = f_{c} \; / \; (\; f_{c} + f_{t} \;) \; d \; \; t_{f_{c}} =$	24.992 in	depth of web in compression in the elastic range
x	d =	54.625 in	depth of steel section
x	$t_{fc} =$	1.750 <i>in</i>	thickness of top flange
Ш	Noncomposite Section in Negative Flexure		
-ii			
ii.	$M_{Y} = min(S_{NCITI}F_{vf}, S_{NCICI}F_{vf}) =$	93,947 kip-in	
Ш	note: M _Y =	7,829 kip-ft	
1	S _{NCITI} =	1 878 9 <i>in</i> ³	section modulus for tension flange
ii.	Sucre =	1,010.3 III	
		1,959.1 <i>IN</i>	section modulus for compression flange
	$D_c = f_c / (f_c +f_t) d - t_{f_c} =$	24.867 in	depth of web in compression in the elastic range

Г

D E S I G N S P R E A D S H E E T S . C O M		I-Girder Section Analysis, AASHTO LRFD 3rd Ed. (2004), Art. 6.10; ver. 0.122 ((c) DesignSpreadsheets.com 2005-2008)		
Project:	l-Girder Section Analysis and Design Spreadsheet Demo for DesignSpreadsheets.com Website	Made By: Date:	admin 4/12/2006	Job No: xy
Subject:	Spreadsheet Demo	Checked By: Date:	admin 4/12/2006	Sheet No: xy

- || indicates that corresponding checks are applicable for section under consideration (based on user's input)

↓ d = || t_{bc} =

54.625 indepth of steel section1.875 inthickness of bottom flange